Atomic-resolution conformational analysis of the GM3 ganglioside in a lipid bilayer and its implications for ganglioside-protein recognition at membrane surfaces.

نویسندگان

  • Mari L DeMarco
  • Robert J Woods
چکیده

Eukaryotic cells depend on external surface markers, such as gangliosides, to recognize and bind various other molecules as part of normal growth and maturation. The localization of gangliosides in the outer leaflet of the plasma membrane, also make them targets for pathogens trying to invade the host cells. Since ganglioside-mediated interactions are critical to both beneficial and pathological processes, much effort has been directed at determining the 3D structures of their carbohydrate head groups; however, technical difficulties have generally prevented the characterization of the head group in intact membrane-bound gangliosides. Determining the 3D structure and presentation of gangliosides at the surface of membranes is important in understanding how cells interact with their local environment. Here, we employ all-atom explicit solvent molecular dynamics (MD) simulations, using the GLYCAM06 force field, to model the conformation and dynamics of ganglioside G(M3) (alpha-Neu5Ac-(2-3)-beta-Gal-(1-4)-beta-Glc-ceramide) in a DMPC lipid bilayer. By comparison with MD simulations of the carbohydrate head-group fragment of G(M3) alone, it was possible to quantify and characterize the extent of changes in head-group presentation and dynamics associated with membrane anchoring. The accuracy of data from the MD simulations was determined by comparison to NMR and crystallographic data for the head group in solution and for G(M3) in membrane-mimicking environments. The experimentally consistent model of G(M3), in a lipid bilayer, was then used to model the recognition of G(M3) at the cell surface by known protein receptors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction of toxic and non-toxic HypF-N oligomers with lipid bilayers investigated at high resolution with atomic force microscopy

Protein misfolded oligomers are considered the most toxic species amongst those formed in the process of amyloid formation and the molecular basis of their toxicity, although not completely understood, is thought to originate from the interaction with the cellular membrane. Here, we sought to highlight the molecular determinants of oligomer-membrane interaction by atomic force microscopy. We mo...

متن کامل

Differential uPAR recruitment in caveolar-lipid rafts by GM1 and GM3 gangliosides regulates endothelial progenitor cells angiogenesis

Gangliosides and the urokinase plasminogen activator receptor (uPAR) tipically partition in specialized membrane microdomains called lipid-rafts. uPAR becomes functionally important in fostering angiogenesis in endothelial progenitor cells (EPCs) upon recruitment in caveolar-lipid rafts. Moreover, cell membrane enrichment with exogenous GM1 ganglioside is pro-angiogenic and opposite to the acti...

متن کامل

Ganglioside-Lipid and Ganglioside-Protein Interactions Revealed by Coarse-Grained and Atomistic Molecular Dynamics Simulations

Gangliosides are glycolipids in which an oligosaccharide headgroup containing one or more sialic acids is connected to a ceramide. Gangliosides reside in the outer leaflet of the plasma membrane and play a crucial role in various physiological processes such as cell signal transduction and neuronal differentiation by modulating structures and functions of membrane proteins. Because the detailed...

متن کامل

Molecular Insight into the Mutual Interactions of Two Transmembrane Domains of Human Glycine Receptor (TM23-GlyR), with the Lipid Bilayers

Appearing as a computational microscope, MD simulation can ‘zoom in’ to atomic resolution to assess detailed interactions of a membrane protein with its surrounding lipids, which play important roles in the stability and function of such proteins. This study has employed the molecular dynamics (MD) simulations, to determine the effect of added DMPC or DMTAP molecules on the structure of D...

متن کامل

Ganglioside-specific binding protein on rat brain membranes.

A derivative of ganglioside GT1b (IV3NeuAc,II3(NeuAc)2-GgOse4) with an active ester in its lipid portion was synthesized and covalently attached to bovine serum albumin (BSA). The conjugate, having four GT1b molecules per albumin molecule [GT1b)4BSA) was radioiodinated and used to probe rat brain membranes for ganglioside binding proteins. A ganglioside-specific, high affinity (KD = 2-4 nM), sa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Glycobiology

دوره 19 4  شماره 

صفحات  -

تاریخ انتشار 2009